누워서 보는 웹 애플리케이션 성능 II – 다운 샘플링이 가져오는 왜곡 현상들

이전 글(누워서 보는 웹 애플리케이션 성능 – 평균과 분포)에서는 개별 응답시간을 평균 응답시간으로 표현할 경우 왜곡 현상이 발생되는 것을 다루었습니다. 간단히 말해 Y축의 데이터를 평균화 시키면서 나타나는 왜곡 현상입니니다. 이번 글에서는 샘플링 주기(X축의 데이터 왜곡 현상)가 가져 오는 문제점 및 와탭이 APM/SMS 서비스를 운영하면서 만난 유사한 문제들과 그 해결책을 공유하고자 합니다.

APM에서 발생하는 샘플링 문제 

N사의 APM을 사용하면서 고객들이 가지는 몇몇 고충들이 있었는데요…

  • 장애가 난 후 적게는 몇 분에서, 많게는 몇십 분이 지난 후에 장애를 인지하게 된다.
  • 성능에 대한 문제가 발생했음에도 불구하고 응답시간이 낮은 트랜잭션의 비율이 많으면  문제가 안 보인다.

실제 Quora에 올라온 글입니다.

newrelic issue

간단히 요약하면, ‘N사는 1분 평균의 데이터를 보여주기 때문에 최근 20초 동안 애플리케이션에 문제가 발생하더라도, 나머지 40초 간의 정상적인 트랜잭션으로 인해 데이터가 평균화 되면서 실제 문제를 못 보는 경우가 발생한다.’라는 것입니다.

누워서 보는 웹 애플리케이션 성능 II – 다운 샘플링이 가져오는 왜곡 현상들 더보기